Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

نویسندگان

  • Jared Markowitz
  • Pavitra Krishnaswamy
  • Michael F Eilenberg
  • Ken Endo
  • Chris Barnhart
  • Hugh Herr
چکیده

Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of a powered ankle-foot prosthesis based on a neuromuscular model.

Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present a...

متن کامل

Effect of an 8-Weeks of Comprehensive Corrective Protocol on Postural control, low Back Pain, Gait Speed and Quality of Life on Unilateral Transtibial Amputees

Aims: Amputation makes a person susceptible to postural deviation and compensatory movements and causes reduced performance, biocompatibility, pain, and dissatisfaction. The purpose of this study was to investigate the effect of eight weeks of a comprehensive rehabilitation protocol on indicators of postural control, back pain, quality of life, and gait speed in adults with unilateral lower lim...

متن کامل

A Neuromuscular - Model Based Control Strategy For Powered Ankle - Foot Prostheses

In the development of a powered ankle-foot prosthesis, it is desirable to provide the prosthesis with the ability to exhibit human-like dynamics. A simple method for achieving this goal involves trajectory tracking, where a specific target torque trajectory is known, and the controller issues commands to follow the trajectory as closely as possible. However, without a methodology to update the ...

متن کامل

The AMP-Foot 2.0 : A Powered Transtibial Prosthesis That Mimics Intact Ankle Behavior

Almost all of the transtibial prostheses that are available on the market are purely passive devices. These prostheses store (potential) energy in an elastic element during the controlled dorsiflexion phase of stance and release it right after in order to move the body forward. As a result of this, only the energy which has been stored can be used for push-off and thus for propulsion. There exi...

متن کامل

Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses

People with a transtibial amputation using passive-elastic prostheses exhibit reduced prosthetic ankle power and push-off work compared to non-amputees and compensate by increasing their affected leg (AL) hip joint work and unaffected leg (UL) ankle, knee, and hip joint and leg work during level-ground walking. Use of a powered ankle–foot prosthesis normalizes step-to-step transition work durin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 366 1570  شماره 

صفحات  -

تاریخ انتشار 2011